Đề ôn thi tốt nghiệp môn Toán Lớp 12 - Đề số 13 - Năm học 2021-2022 (Có đáp án)

docx 25 trang Minh Khoa 25/04/2025 2040
Bạn đang xem 20 trang mẫu của tài liệu "Đề ôn thi tốt nghiệp môn Toán Lớp 12 - Đề số 13 - Năm học 2021-2022 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_on_thi_tot_nghiep_mon_toan_lop_12_de_so_13_co_dap_an.docx

Nội dung text: Đề ôn thi tốt nghiệp môn Toán Lớp 12 - Đề số 13 - Năm học 2021-2022 (Có đáp án)

  1. Đề ⓭ ÔN THI TỐT NGHIỆP 2022 Câu 1. Có bao nhiêu cách chọn 2 học sinh từ một nhóm gồm 10 học sinh? 2 2 2 10 A. C10 . B. A10 . C. 10 . D. 2 . Câu 2. Cho cấp số cộng un với u1 3; u2 9 . Công sai của cấp số cộng đã cho bằng A. 6. B. 3. C. 12. D. -6. Câu 3. Nghiệm của phương trình 3x 1 27 là A. x 4 . B. x 3. C. x 2 . D. x 1. Câu 4. Thể tích khối lập phương cạnh 2 bằng A. 6 . B. 8 . C. 4 . D. 2 . Câu 5. Tập xác định của hàm số y log2 x là A. 0; . B. ; . C. 0; . D. 2; . Câu 6. Hàm số F(x) là một nguyên hàm của hàm số f (x) trên khoảng K nếu A. F '(x) f (x),x K. B. f '(x) F(x),x K. C. F '(x) f (x),x K. D. f '(x) F(x),x K. Câu 7. Cho khối chóp có diện tích đáy B 3 và chiều cao h 4 . Thể tích của khối chóp đã cho bằng A. 6 . B. 12. C. 36 . D. 4 . Câu 8. Cho khối nón có chiều cao h 3 và bán kính đáy r 4. Thể tích của khối nón đã cho bằng A. 16 . B. 48 . C. 36 . D. 4 . Câu 9. Cho mặt cầu có bán kính R 2 . Diện tích của mặt cầu đã cho bằng 32 A. . B. 8 . C. 16 . D. 4 . 3 Câu 10. Cho hàm số f x có bảng biến thiên như sau: Hàm số đã cho nghịch biến trên khoảng nào dưới đây? A. ; 1 . B. 0;1 . C. 1;0 . D. ;0 . 3 Câu 11. Với a là hai số thực dương tùy ý, log2 a bằng 1
  2. 3 1 A. log a . B. log a . C. 3 log a . D. 3log a . 2 2 3 2 2 2 Câu 12. Diện tích xung quanh của hình trụ có độ dài đường sinh l và bán kính đáy r bằng 1 A. 4 rl . B. rl . C. rl . D. 2 rl . 3 Câu 13. Cho hàm số f x có bảng biến thiên như sau: Hàm số đã cho đạt cực đại tại A. x 2. B. x 2 . C. x 1. D. x 1. Câu 14. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? A. y x3 3x . B. y x3 3x . C. y x4 2x2 . D. y x4 2x2 . x 2 Câu 15. Tiệm cận ngang của đồ thị hàm số y là x 1 A. y 2 . B. y 1. C. x 1. D. x 2 . Câu 16. Tập nghiệm của bất phương trình log x 1 là A. 10; . B. 0; . C. 10; . D. ;10 . Câu 17. Cho hàm số bậc bốn y f x có đồ thị trong hình bên. Số nghiệm của phương trình f x 1 là A. 3 . B. 2 . C. 1. D. 4 . 2
  3. 1 1 Câu 18. Nếu f x dx 4 thì 2 f x dx bằng 0 0 A. 16. B. 4 . C. 2 . D. 8 . Câu 19. Số phức liên hợp của số phức z 2 i là A. z 2 i . B. z 2 i . C. z 2 i . D. z 2 i . Câu 20. Cho hai số phức z1 2 i và z2 1 3i . Phần thực của số phức z1 z2 bằng A. 1. B. 3 . C. 4 . D. 2 . Câu 21. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z 1 2i là điểm nào dưới đây? A. Q 1;2 . B. P 1;2 . C. N 1; 2 . D. M 1; 2 . Câu 22. Trong không gian Oxyz , hình chiếu vuông góc của điểm M 2;1; 1 trên mặt phẳng Ozx có tọa độ là A. 0;1;0 . B. 2;1;0 . C. 0;1; 1 . D. 2;0; 1 . Câu 23. Trong không gian Oxyz , cho mặt cầu S : x 2 2 y 4 2 z 1 2 9. Tâm của S có tọa độ là A. 2;4; 1 . B. 2; 4;1 . C. 2;4;1 . D. 2; 4; 1 . Câu 24. Trong không gian Oxyz , cho mặt phẳng P : 2x 3y z 2 0 . Véctơ nào dưới đây là một véctơ pháp tuyến của P ? A. n3 2;3;2 . B. n1 2;3;0 . C. n2 2;3;1 . D. n4 2;0;3 . x 1 y 2 z 1 Câu 25. Trong không gian Oxyz, cho đường thẳng d : . Điểm nào sau đây thuộc d ? 2 3 1 A. P 1;2; 1 . B. M 1; 2;1 . C. N 2;3; 1 . D. Q 2; 3;1 . Câu 26. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng ABC , SA a 2, tam giác ABC vuông cân tại B và AC 2a (minh họa nhứ hình bên). Góc giữa đường thẳng SB và mặt phẳng ABC bằng A. 30. B. 45. C. 60. D. 90. 3
  4. Câu 27. Cho hàm số f x có bảng xét dấu của f x như sau: Số điểm cực trị của hàm số đã cho là A. 3 . B. 0 . C. 2 . D. 1. Câu 28. Giá trị nhỏ nhất của hàm số f x x4 10x2 2 trên đoạn  1;2 bằng A. 2 . B. 23 . C. 22. D. 7 . a b Câu 29. Xét số thực a và b thỏa mãn log3 3 .9 log9 3. Mệnh đề nào dưới đây đúng A. a 2b 2 . B. 4a 2b 1. C. 4ab 1. D. 2a 4b 1. Câu 30. Số giao điểm của đồ thị hàm số y x3 3x 1 và trục hoành là A. 3 . B. 0 . C. 2 . D. 1. Câu 31. Tập nghiệm của bất phương trình 9x 2.3x 3 0 là A. 0; . B. 0; . C. 1; . D. 1; . Câu 32. Trong không gian, cho tam giác ABC vuông tại A , AB a và AC 2a . Khi quay tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó bằng A. 5 a2 . B. 5 a2 . C. 2 5 a2 . D. 10 a2 . 2 2 2 2 Câu 33. Xét xex dx , nếu đặt u x2 thì xex dx bằng 0 0 2 4 1 2 1 4 A. 2 eudu . B. 2 eudu . C. eudu . D. eudu . 0 0 2 0 2 0 Câu 34. Diện tích S của hình phẳng giới hạn bởi các đường y 2x2 , y 1, x 0 và x 1 được tính bởi công thức nào sau đây? 1 1 A. S 2x2 1 dx . B. S 2x2 1 dx . 0 0 1 1 2 C. S 2x2 1 dx . D. S 2x2 1 dx . 0 0 Câu 35. Cho hai số phức z1 = 3- i và z2 = - 1+ i . Phần ảo của số phức z1z2 bằng A. 4 . B. 4i . C. 1. D. i . 2 Câu 36. Gọi z0 là nghiệm phức có phần ảo âm của phương trình z - 2z + 5 = 0 . Môđun của số phức z0 + i bằng A. 2 . B. 2 . C. 10 . D. 10. 4
  5. x 3 y 1 z 1 Câu 37. Trong không gian Oxyz, cho điểm M (2;1;0) và đường thẳng : . Mặt 1 4 2 phẳng đi qua M và vuông góc với có phương trình là A. 3x y z 7 0 . B. x 4y 2z 6 0 . C. x 4y 2z 6 0 . D. 3x y z 7 0 . Câu 38. Trong không gian Oxyz, cho hai điểm M (1;0;1) và N(3;2; 1) . Đường thẳng MN có phương trình tham số là x 1 2t x 1 t x 1 t x 1 t A. y 2t . B. y t . C. y t . D. y t . z 1 t z 1 t z 1 t z 1 t Câu 39. Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A , 2 học sinh lớp B và 1 học sinh lớp C , ngồi và hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng 1 3 2 1 A. . B. . C. . D. . 6 20 15 5 Câu 40. Cho hình chóp S.ABC có đáy là tam giác vuông tại A , AB 2a , AC 4a , SA vuông góc với mặt phẳng đáy và SA a (hình minh họa). Gọi M là trung điểm của AB . Khoảng cách giữa hai đường thẳng SM và BC bằng 2a 6a 3a a A. . B. . C. . D. . 3 3 3 2 1 Câu 41. Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số f (x) x3 mx2 4x 3 đồng biến 3 trên ¡ . A. 5 . B. 4 . C. 3 . D. 2 . Câu 42. Để quảng bá cho sản phẩm A, một công ty dự định tổ chức quảng cáo theo hình thức quảng cáo trên truyền hình. Nghiên cứu của công ty cho thấy: nếu sau n lần quảng cáo được phát thì tỉ lệ 1 người xem quảng cáo đó mua sản phẩm A tuân theo công thức P n . Hỏi cần 1 49e 0,015n phát ít nhất bao nhiêu lần quảng cáo để tỉ lệ người xem mua sản phẩm đạt trên 30%? A. 202 . B. 203 . C. 206 . D. 207 . 5
  6. ax 1 Câu 43. Cho hàm số f x a,b,c ¡ có bảng biến thiên như sau: bx c Trong các số a,b và c có bao nhiêu số dương? A. 2. B. 3. C. 1. D. 0. Câu 44. Cho hình trụ có chiều cao bằng 6a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng A. 216 a3 . B. 150 a3 . C. 54 a3 . D. 108 a3 . Câu 45. Cho hàm số f x có f 0 0 và f x cos x cos2 2x, R . Khi đó f x dx bằng 0 1042 208 242 149 A. . B. . C. . D. . 225 225 225 225 Câu 46. Cho hàm số f x có bảng biến thiên như sau 5 Số nghiệm thuộc đoạn 0; của phương trình f sin x 1 là 2 A. 7 . B. 4 . C. 5 . D. 6 . Câu 47. Xét các số thực dương a,b, x, y thoả mãn a 1, b 1 và a x b y ab . Giá trị nhỏ nhất của biểu thức P x 2y thuộc tập hợp nào dưới đây? 5 5 A. 1;2 . B. 2; . C. 3;4 . D. ;3 . 2 2 x m Câu 48. Cho hàm số f x ( m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m sao x 1 cho max f x min f x 2 . Số phần tử của S là 0;1 0;1 A. 6 . B. 2 . C. 1. D. 4 . 6
  7. Câu 49. Cho hình hộp ABCD.A B C D có chiều cao bằng 8 và diện tích đáy bằng 9 . Gọi M , N, P và Q lần lượt là tâm của các mặt bên ABB A , BCC B , CDD C và DAA D . Thể tích của khối đa diện lồi có các đỉnh là các điểm A, B,C, D, M , N, P và Q bằng A. 27 . B. 30 . C. 18. D. 36 . 2 2 Câu 50. Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x y) log4 x y ? A. 3 . B. 2 . C. 1. D. Vô số. ------------- HẾT ------------- 7
  8. BẢNG ĐÁP ÁN 1A 2A 3A 4B 5C 6C 7D 8A 9C 10C 11D 12D 13D 14A 15B 16C 17D 18D 19C 20B 21B 22D 23B 24C 25A 26B 27C 28C 29D 30A 31B 32C 33D 34D 35A 36B 37C 38D 39D 40A 41A 42B 43C 44D 45C 46C 47D 48B 49B 50B HƯỚNG DẪN GIẢI CHI TIẾT Câu 1. Có bao nhiêu cách chọn 2 học sinh từ một nhóm gồm 10 học sinh? 2 2 2 10 A. C10 . B. A10 . C. 10 . D. 2 . Lời giải Chọn A 2 Số cách chọn 2 học sinh từ nhóm gồm 10 học sinh là tổ hợp chập 2 của 10: C10 (cách). Câu 2. Cho cấp số cộng un với u1 3; u2 9 . Công sai của cấp số cộng đã cho bằng A. 6. B. 3. C. 12. D. -6. Lời giải Chọn A Cấp số cộng un có số hạng tổng quát là: un u1 n 1 d ; (Với u1 là số hạng đầu và d là công sai). Suy ra có: u2 u1 d 9 3 d d 6. Vậy công sai của cấp số cộng đã cho bằng 6. Câu 3. Nghiệm của phương trình 3x 1 27 là A. x 4 . B. x 3. C. x 2 . D. x 1. Lời giải Chọn A Ta có: 3x 1 27 . 3x 1 33 x 1 3 x 4. Vậy nghiệm của phương trình là x 4 . Câu 4. Thể tích khối lập phương cạnh 2 bằng A. 6 . B. 8 . C. 4 . D. 2 . Lời giải Chọn B Thể tích khối lập phương cạnh a là V a3 . Vậy thể tích khối lập phương cạnh 2 là: V 23 8 . 8
  9. Câu 5. Tập xác định của hàm số y log2 x là A. 0; . B. ; . C. 0; . D. 2; . Lời giải Chọn C Điều kiện xác định của hàm số y log2 x là x 0 . Vậy tập xác định của hàm số y log2 x là D 0; . Câu 6. Hàm số F(x) là một nguyên hàm của hàm số f (x) trên khoảng K nếu A. F '(x) f (x),x K. B. f '(x) F(x),x K. C. F '(x) f (x),x K. D. f '(x) F(x),x K. Lời giải Chọn C Theo định nghĩa thì hàm số F(x) là một nguyên hàm của hàm số f (x) trên khoảng K nếu F '(x) f (x),x K. Câu 7. Cho khối chóp có diện tích đáy B 3 và chiều cao h 4 . Thể tích của khối chóp đã cho bằng A. 6 . B. 12. C. 36 . D. 4 . Lời giải Chọn D 1 1 Ta có công thức thể tích khối chóp V .B.h .3.4 4 . 3 3 Câu 8. Cho khối nón có chiều cao h 3 và bán kính đáy r 4. Thể tích của khối nón đã cho bằng A. 16 . B. 48 . C. 36 . D. 4 . Lời giải Chọn A 1 1 Ta có công thức thể tích khối nón V . .r 2.h . .16.3 16 . 3 3 Câu 9. Cho mặt cầu có bán kính R 2 . Diện tích của mặt cầu đã cho bằng 32 A. . B. 8 . C. 16 . D. 4 . 3 Lời giải Chọn C S 4 R2 16 Câu 10. Cho hàm số f x có bảng biến thiên như sau: 9
  10. Hàm số đã cho nghịch biến trên khoảng nào dưới đây? A. ; 1 . B. 0;1 . C. 1;0 . D. ;0 . Lời giải Chọn C 3 Câu 11. Với a là hai số thực dương tùy ý, log2 a bằng 3 1 A. log a . B. log a . C. 3 log a . D. 3log a . 2 2 3 2 2 2 Lời giải Chọn D 3 Ta có: log2 a 3log2 a. Câu 12. Diện tích xung quanh của hình trụ có độ dài đường sinh l và bán kính đáy r bằng 1 A. 4 rl . B. rl . C. rl . D. 2 rl . 3 Lời giải Chọn D Diện tích xung quanh của hình trụ S 2 rl . Câu 13. Cho hàm số f x có bảng biến thiên như sau: Hàm số đã cho đạt cực đại tại A. x 2. B. x 2 . C. x 1. D. x 1. Lời giải Chọn D Hàm số đạt cực đại tại điểm mà đạo hàm đổi dấu từ dương sang âm. Từ bảng biến thiên hàm số đạt cực đại tại x 1. Câu 14. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? 10